SAC Summer School 2016

Implementation and analysis of
cryptographic protocols

Part 3: Attacks

https://www.douglas.stebila.ca/teaching/sac-2016

BLEICHENBACHER’S ATTACK
ON RSA KEY TRANSPORT

RSA key transport

RSA

HANDSHAKE PROTOCOL

public key

ClientHello = —-eeea-- >

Certificate*

ServerKeyExchange*
CertificateRequest*
oDone
Certificate* 1. Pick random binary string
ClientKeyExchange 2. Encrypt under server’s RSA public key

CertificateVerify* 3. Send to server

(derive session keys)

[ChangeCipherSpec]

Finished —-e----- > (derive session keys)
[ChangeCipherSpec]

Se------- Finished

Textbook RSA public key encryption

* Key Generation:
— Pick primes p, q
— Compute n = pq
— Compute ¢(n) = (p-1)(g-1)
— Pick e = 3 or 65537 (for example)
— Compute d = el mod ¢d(n)
— Public key: (n, e)
— Private key: (n, d)

Textbook RSA public key encryption

* Encrypt(m, pk = (n,e))
— Represent m as an integer between 1 and n

— Compute c =m® mod n

Malleability

* Textbook RSA encryption is malleable:

— c¢?2 mod n is the encryption of m? mod n

* Encryption isn’t supposed to provide integrity,
but this is still undesirable.

e One solution:

— Add redundancy or encoding that would be hard
to maintain after malleability

PKCS #1 v1.5 padding

* PKCS = Public Key Cryptography Standards
— Originally created by the RSA company

e Let k be the length of n in bits

- M= I T
where |padding| =k - |[msg]| -3
and every byte of padding is non-zero

PKCS #1 v1.5 encryption/decryption

* Encrypt(m, pk =(n,e))
— Encode m as M using PKCS#1 v1.5 padding
—c=M®modn

* Decrypt(c, sk =(n,d))
— Compute M = cd mod n
— If M is PKCS-conforming, parse and return m
— Else output error

Bleichenbacher’s attack

* Given c and an oracle for deciding if c is PKCS-
conforming, find m.

1. Compute ¢’ = cs® mod n for small s

2. If ¢’ is PKCS-conforming, then first 2 bytes of ms
mod nare 00 || 02

3. In other words, 2B < ms mod n < 3B
where B=28k2) mod n

4. Repeat with many s to narrow down range of m
5. For 1024-bit N, about 22° oracle queries suffice

PKCS-conformance oracle in SSLv3

Server processing of ClientKeyExchange message in
RSA key transport:

1. Compute m =c? mod n
2. If m not PKCS-conforming, reject

3. Else, do additional cryptographic operations
— Includes verifying a MAC

4. If MAC fails, reject; else accept

A modified ciphertext will be rejected either way,
but timing provides a way of deciding whether it

was at step 2 or step 4.

Defending against
Bleichenbacher’s attack

1. Make server processing constant time
2. Don’t support RSA key transport

Make server processing constant time

= wnN e

Generate random premaster secret
Receive ciphertext c
Decrypt using textbook RSA encryption

f PKCS conforming, continue as normal using
olaintext

f not PKCS confirming, continue use previously
generated random premaster secret

If MAC fails, reject; else accept.

Defending against
Bleichenbacher’s attack

1. Make server processing constant time

— Hard to get right
— Meyer et al. USENIX 2014

 Timing side channels in OpenSSL, JSSE, Cavium;
* Error message side channel in JSSE

2. Don’t support RSA key transport

— Can still have problems if same key is used with
older protocols that do support RSA key
transport

 Jageretal. CCS2015: QUIC and TLS 1.3 exploitable
with Bleichenbacher oracle from other protocols

BEAST ADAPTIVE CHOSEN
PLAINTEXT ATTACK

CBC Mode

* Recall CBC mode encryption:

— Divide message m into blocks m; | m, | ...

— ¢4 = E (my XOR iv)

Pre-requisites for the attack

 In HTTPS, the same TLS connection is used for
many requests
— Main HTML page
— Images
— CSS

 |In SSLv3 and TLSv1.0, the IV is derived from
the master secret

— Subsequent requests over the same TLS
connection use the same IV

Oracle for testing plaintext block

Adversary observesc, | ¢, | ... | ¢,
for unknown plaintextm; | m, | ... | m

Adversary wants to know if m; = m*

Adversary directs user to send n+1st plaintext
block as
M, = C;y XOR C, XOR m*
=> Cht1 = Ek(mn+1 XOR Cn)
= Ei(c;; XOR ¢,, XOR m™* XOR c,))
= Ey(c; 4 XOR m*)
=¢ iff m*=m,

n

Oracle for testing plaintext block

* Adversary can learn if m; = m*

* If block size is 128 bits, then can test one 128-
bit guess with each chosen plaintext query

* Rizzo and Duong’s BEAST attack makes this
feasible

HTTP requests

e Suppose the adversary can make the victim
make an HTTP request to a particular URL, and
the cookie gets appended immediately after

e GET /¢Cookie: s=1234567890123456

| J J
I !

16 16

e Corresponds to two 16-byte blocks of AES in CBC
mode

First block of 16 bytes: Second block of 16 bytes:
Entirely known to adversary Entirely unknown to adversary

HTTP requests

* Adversary directs to client to request a
different URL that has a different split across

breaks

e GET /abcdefghijklmno¢Cookie: S@

J

234567890123456
I
16

First block of 16 bytes:
Entirely known to adversary

1
16

Second block of 16 bytes:
Adversary knows all except for one byte
=> <256 guesses required

HTTP requests

* Adversary directs to client to request a
different URL that has a different split across

breaks

* GET /abcdefghijklmn<Cookie: S=@

J

34567890123456
I
16

First block of 16 bytes:
Entirely known to adversary

1
16

Second block of 16 bytes:
Adversary knows all except for one byte
=> <256 guesses required

Defending against BEAST attack

TLS v1.1 and above use explicit IVs, so a new IV is
used with each request

At the time of attack (2011), TLS v1.1 adoption
was low

— Recommended solution: switch to RC4

— But then RC4 biases became problematic
Countermeasure: 1/n-1 record splitting

— Send only 1 byte (+ padding) in first block
— Then n-1 bytes in next block

— Has the effect of randomizing the IV in a backward
compatible way

CRIME AND BREACH ATTACKS
ON COMPRESSION

Symmetric key encryption

A symmetric key Main security goal:

encryption scheme is « jndistinguishability
a triple of

algorithms:

. gK Gen() —> k Attacker cannot tell apart
=YReEn encryptions of two messages of

* Encdm)—>c the same length:

* Decilc)—>m

Enc,(m,) looks like Enc,(m,)
KeyGen and Enccan when |my|=|m,]
be probabilistic

Symmetric key encryption

I voted for Bush. m 8 jvocKErN3aafBc6i

I voted for Gore. m meuUzU581bgOvMLZ|

same length input => same length output

Compression

A compression Main security goal:
scheme is a pair of e none
algorithms:

* Comp(m) —>o0 Main functionality goal:

* Decomp(o)—>m |Comp(m)| << |m]| for

common distribution of m

Comp may be Can’t be true for all m due to

probabilistic (but Shannon’s theorem
usually isn’t)

Compression

not much
redundancy here!

more more more
redundancy

)

o)

not much
redundancy here!

3{more }
redundancy

same length input => possibly different length output

Compression then encryption

not much
redundancy here!

WYVXqQpMESn&
tFKS1YsYLm"8]j

more more more
redundancy

1Q0QeOMheg
plTmyEinS

same length input => possibly different length output

A test

Man.

2005 -

lost
WON!
WON!
WON!
WON !

U.
2014
lost
WON !
lost
lost
lost

Arsenal

2005 -

lost
lost
lost
lost
lost

2014
lost
lost
lost
lost
lost

Which ciphertext is for which

message?
yISpDrFhPk3 D1fAGUR1zqv
15Cmymr6xCb 1hXdX3c8qgd+
LTVEAX BYBWK6dANOG
GQGCmvFIM9/
s6Wljgr2

One MmesSage Compresses more

Arsenal Man. U.
2005-2014 2005-2014
10{lost } 2{lost }

2{WON! }
3{WON! lost }

Deflate (LZ77) compression algorithm

* Replaces repeated strings with back references
(distance, length) to previous occurrence.

You say potato,
I say potahto.

* |mportant parameter: window size

Y

You say potato,
I (-14,8)hto.

— How far back does it go to search for occurrences?

— a.k.a. dictionary size

Combining user secrets + adversary
Input
Suppose you have a secret

and combine it with adversarial data
then compress and encrypt

Adaptive attacker can use this to learn your
secret

CRIME ATTACK ON
COMPRESSION IN TLS

TLS record layer

Compression in TLS record layer

Compress

Transmitting an HTTP request

User Browser (HTTP) Browser (TLS)

® Requests ¢ Creates GET request e |nput: HTTP message
www.facebook.com with saved cookie e Compress Send over

* MAC Internet
e Pad

e Encrypt

Secret values in HTTP documents

GEQ The URL can be adversary-supplied data
WW o =

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.10;
rv:34.0) Gecko/20100101 Firefox/34.0

Accept:
text/html,d [15 Sceisr ol lication/xml;g=0.9,%*/*

;G=0.8 identifies my session
Accept-Lang
P : to Facebook

Accept-Encd
DNT: 1

Cookie:|ldatr= DzK9VBnObWquL7XLwGSSEsu,

reg fb
reg fb gate= https/3A/2F/2Fwww facebook com%2F; dpr=2

Connection: keep-alive

Cache-Control: max-age=0

Attack

Please send a GET request for

https://www.facebook.com/?datr=A

<«»> Q0 >

Attack

Please send a GET request for

https://www.facebook.com/?datr=A

<«»> Q0 >

GET /?datr=A

v Host: www.facebook.com

Cookie: datr=DzK9VBnObW
DgfL7XLWGSSEsu

«» 0

Please send a GET request for

https://www.facebook.com/?datr=A

>

Attack

—

Observes compressed ./
& encrypted reques,t"

’

VGytgpDn/1Ym50CdB3

D5EmdjLRdAkx7tEVKG43WJ]
yD++cx8CJ1BbetQejiXLX
+0Q09bnUMYQwtglOSfobf
oyWIKYXHsKFqYNgWAFCIg
8U5BK92Ayvk858MI0ONnTukK

len = 204

Attack

Please send a GET request for
https://www.facebook.com/?dat

«» 0

GET /?datr=B

v Host: www.facebook.com

Cookie: datr=DzK9VBnObW
DgfL7XLWGSSEsu

Attack

Please send a GET request for
https://www.facebook.com/?dat

<> Q > Observes compressed .~
& encrypted reques,t"

’

UQ5ItQ1Y4BVCy37Fhu
v hyre715P4pWwAYfvnzg9om

R5Qq250PF1yQpf83AFJ34

QS+9BPjuUnBzVGENe15r29

rY9tRfIFAdE8ecEmVTFtl
zHy+8EIwxDK67rxM29cl]

len = 204

«» 0

Please send a GET request for
https://www.facebook.com/?dat

Attack

—

Observes compressed ./
& encrypted reques,t"

’

Wdb42n@LeQbVweAoiC

j900U+qaGPPbe9Sebz2Dx
GhYWj9U4X0cKYyBpTSpB4
4d0qd4DpCscHEsBdgop6q
DXiSBJI+MLOKbpRVAAMPhy
9Sn9VPnsHgKyB4I11gCKA

len = 204

«» 0

Please send a GET request for
https://www.facebook.com/?dat

Attack

—

Observes compressed ./
& encrypted reques,t"

’

08Gb8JIwSuoNrcQ7190

nM7n2210tByzmvv555ZP+
+41NW2wIuRrTF6K1KdjOB
425VVDUbKKdHNF9YaaxTy
1VWBV01ApZ4PTSnB1J0Opt
jAsecGXjRXOXTwye

Attack

Please send a GET request for
https://www.facebook.com/

Repeated text => compression

]
Host: www.tacebook.com

Cookie: 9VBnObW
DgfL7XLW y

«» 0

Please send a GET request for
https://www.facebook.com/?dat

Attack

—

Observes compressed ./
& encrypted reques,t"

’

Ok3MV18blnYFIjz2tcu

x2mJ8MLULVgMSYOSLo1r0
wxwjEG8pLwaPaVtrnf46l
ypdgbYQ220Jw63ixkS1HR
QVfz8UKs9tOhPVTAWUiwS
yukxrKgq9x9I+3f081lv8aU

len = 205

CRIME attack on TLS
“Compression Ratio Info-leak Made
Easy”

A few tricky bits to make it work
in TLS:

Rizzo and Duong
[ekoparty 2012]

Victim visits adversary-
controlled page

Adversarial Javascript causes
browser to make many
requests

Figure out 1% letter of cookie
Figure out 2" |etter of cookie
Figure out 3™ letter of cookie

TLS splits plaintext into 16K
records then compresses and
encrypts each record
separately

Need to ensure that you can
observe length differences
based on compression

But it can be made to work!

CRIME wasn’t new

* Kelsey [FSE 2002] theorized length-based
attacks on compression-encryption with
adversary-chosen prefix.

Impact of CRIME attack

TLS Compression / CRIME

' Sites that support
TLS compression

2.6% 3,613

-0.1%

August 3, 2016 = https://www.trustworthyinternet.org/ssl-pulse/

But...

* Compression is present
elsewhere on the
Internet.

« HTTP allows gzip

compression of the
body

BREACH ATTACK ON
COMPRESSION IN HTTP

BREACH attack

e Attack against HTTP “Browser Reconnaissance
compression and Exfiltration via Adaptive
hypothesized in Compression of Hypertext”

CRIME presentation « attack demonstrated
against secrets in HTML

* Gluck, Harris, Prado [Black
Hat 2013]

Please send a GET request for
https://www.bank.com/transfer
?to=Eve&amount=1000000

<+« QQ

GET /transfer?to=Eve
&amount=1000000
Host: www.bank.com

Cookie: account=Alice

Anti-CSRF tokens

Protection strategy: server
hides a random token in
each HTML form it creates
and will only execute
action if received
response contains that
token.

<form

action="/money transfer”
method="post">

<input type="hidden"
name="csrftoken"

value="OWT4NmQ1ODE4ODRjN2Q1
NT1hMmZ1YWE...">

</form>

BREACH Attack

Works against websites
that echo user input in the
same page as a valuable
secret (e.g., anti-CSRF
token).

 combining user secrets
+ adversary input then
compressing

<p>Welcome,
<?=$ GET['username']?>.</p>

<form

action="/money_ transfer”
method="post">

<input type="hidden"
name="csrftoken"

value="OWT4NmQ1ODE4ODRjN2Q1
NT1hMmMZ1YWE...">

</form>

W N B

Recommendations from BREACH
attack

. Disabling HTTP compression
. Separating secrets from user input
. Randomizing secrets per request

. Masking secrets (effectively randomizing by
XORing with a random nonce)

L.ength hiding (by adding a random number of
oytes to the responses)

. Rate-limiting the requests

Impact of BREACH attack

00 M B = @ developers.google.com/speed/docs/insights/EnableCompres: ¢ ®

Google
() Developers Search Qo

PageSpeed Insights &1 1

Enable Compression

“Enable and test gzip compression

support on your web server.”

usage for

Recommendations

Enable and test gzip compression support on your web server. The HTMLS Boilerplate project contains sample configuration files for all the
most popular servers with detailed comments for each configuration flag and setting: find your favorite server in the list, look for the gzip
section, and confirm that your server is configured with recommended settings. Alternatively, consult the documentation for your web server
on how to enable compression:

® Apache: Use mod_deflate

® Nginx: Use ngx_http_gzip_module

® |IS: Configure HTTP Compression

Compression in network protocols

= supports = supports = separate =« SSH
compression compression compression of « PPTP
= BREACH attack = CRIME/BREACH every headers = OpenVPN
= still widely used work against early = uses special = XMPP
versions algorithm HPACK « IMAP
for header
« SMTP

compression

CRIME and BREACH
Attacks

Please send a GET request for

https://www.facebook.com/?datr=A

<> Q > Observes compressed .~
& encrypted reques,f/

" VGytgpDn/1Ym50CdB3
D5EmdjLRAKX7tEVKGA3W3

yD++cx8CJ1BbetQejiXLX
+0Q09bnUMYQwtgl0OSfobf
oyWIKYXHsKFqYNgWAFCIg
8U5BK92Ayvk858MI0ONnTukK

len = 204

The HEIST attack

* “HTTP Encrypted Information can be Stolen
through TCP windows”

* Just published at BlackHat 2016 last week

* https://www.blackhat.com/docs/us-
16/materials/us-16-VanGoethem-HEIST-HTTP-
Encrypted-Information-Can-Be-Stolen-
Through-TCP-Windows-wp.pdf

HEIST attack

Please send a GET request for
https://www.facebook.com/?datr=A

Tell me when you are done
loading the request
(Javascript Resource Timing API)

Doesn’t require attacker
to be on the network path

CROSS-CIPHERSUITE ATTACK

Security goals of TLS

From an application

perspective, TLS provides:

n eg°tiati°” — negotiation of
parameters

aUthentication — entity authentication
kex key exchange _ key EXChange

— confidentiality and

co nfidentia ity integrity of messages
I n t egrity

How we’d like to analyze ciphersuites

ciphersuite 1 ciphersuite 2 ciphersuite 3
(neg) (neg) (neg)
auth, auth, auth,
(kex,) (kex,) (kex;)

) Sate) (| e (| e

The reality of multi-ciphersuite usage

In practice, TLS servers use the

same long-term key for all
ciphersuites ciphersuite 3

contf,) O contf,) O C;:::z

Long-term key reuse across
ciphersuites

Is this secure?

Even if a ciphersuite is secure on its own, it may
not be secure if the long-term key is shared
between two ciphersuites.

Cross-ciphersuite attack

Mavrogiannopoulos et al. CCS 2012[MVVP12]
(built on observation of Wagner & Schneier 1996)

struct {
select (KeyExchangeAlgorithm) :
case dhe_dss:
1SS (I E 1
ServerDHParams params;
digitally-signed struct { }

struct {
opaque dh_p<1..2716-1>;
opaque dh_g<1..2716-1>;
opaque dh_Ys<1..2716-1>;

] ServerDHParams;

opaque client_random[32];

opaque server_random[32];

ServerDHParams params; struct {
} signed_params; ECCurveType curve_type = explicit_prime(1);

opaque prime_p <1..278-1>;

ServerECDHParams params; ECCu?ve curve;
digitally-signed struct { ECPoint base; R

opaque client_random[32]; opaque order <1..2 8_}>;

opaque server_random[32]; opaque cofactor <1;.2 8-1>;

ServerECDHParams params; opaque point <1..278-1>;
} s } ServerECDHParams;

2. Some valid ServerECDHParams binary

1. No "type" information. strings are also valid WEAK
ServerDHParams binary strings.

[MVVP12] Cross-ciphersuite attack

(built on observation of Wagner & Schneier 1996)

=> TLS not secure with long-term key reuse.

=> Security of a ciphersuite in isolation does not
imply security with long-term key reuse.

RENEGOTIATION ATTACK

Why renegotiate?

Renegotiation allows parties in an established TLS channel to
create a new TLS channel that continues from the existing
one.

Once you've established a TLS channel, why would you ever
want to renegotiate it?

— Change cryptographic parameters
— Change authentication credentials
— ldentity hiding for client
* second handshake messages sent encrypted under first record layer
— Refresh encryption keys

* more forward secrecy
* record layer has maximum number of encryptions per session key

Renegotiation in TLS

(pre-November 2009)

Client Server
TLS handshake, (TLS)

TLS recordlayer,

Messages for renegotiated

handshake are like those in
original handshake, just sent
in existing record layer

I’d like to

renegotiate

TLS handshake;

TLS recordlayer,

TLS Renegotiation “Attack”

Ray & Dispensa, November 2009

Client Eve Not an attack on Server
TLS handshakepg TLS, but on how (application)
N NN applications

< misuse TLS

TLS recordlayergg

/\ Application
receives

) .

\/

TLS recordlayerag

Ma O ~+ my ——> mgim,

Mg

concatenation
of record layers

Example: HTTP Injection

e Attacker sends

— mg = “GET /orderPizza?deliverTo=123-Fake-St<
X-lgnore-This: ”

e (Client sends

— m, = “GET /orderPizza?deliverTo=456-Real-St<
Cookie: Account=1A2B”

e Server’s web server receives
— mg||m, = “GET /orderPizza?deliverTo=123-Fake-St<

X-lgnore-This: GET /orderPizza?deliverTo=456-Real-St<
Cookie: Account=1A2B"

X-lgnore-This: is an invalid header, so the rest of that line gets ignored.

The server’s GET request is processed with the cookie supplied by the client.

Renegotiation security

Q: What property should a secure renegotiable
protocol have?

A: Whenever two parties successfully renegotiate,
they are assured they have the exact same view of
everything that happened previously.

* Every time we accept, we have a matching
conversation of previous handshakes and record

layers.

TLS Renegotiation Countermeasures

Two related countermeasures standardized by IETF
in RFC 5746:

1. Signalling Ciphersuite Value

2. Renegotiation Indication Extension

Basic idea: include fingerprint of previous
handshake when renegotiating.

e Note: This is a "white-box" modification of TLS.

TLS Renegotiation Countermeasures

SCSV/RIE fairly quickly and

Renegotiation Support

widely adopted.
\\ = Secure renegotiation
133,890 96.0%
o +01%
Cu rre ntly 9 6 A) ® Insecure renegotiation
deployment 1,909 1.4%

(SSL Pulse, August 3, 2016) +0.0%

® Both

578 0.4%
+ 0.0 %

No support

3,043 2.2%

+0.0%

LOGJAM ATTACK

Export ciphersuites

e Early versions of SSL and TLS included export
ciphersuites, which included weak (512-bit)
RSA and Diffie-Hellman

* Recall: TLS ephemeral DH is signed Diffie-
Hellman

— But signature only on a subset of the request
(nonces + server public key)

— Transcript authentication comes from a MAC
under the master secret derived from the DH
shared secret

Logjam attack idea

1. MITM modifies client request to server to
request export signed-DH ciphersuite

— If adversary just relays this back, the client won’t

accept, because the transcripts won’t match and the
MAC will fail

2. MITM receives 2048-bit RSA sighature on 512-
bit finite field DH key

3. MITM computes discrete log on 512-bit public
key

4. MITM computes DH shared secret

5. MITM computes MAC on transcript the client
expects

6. MITM completes handshake with client

Export ciphersuites

e Most modern TLS clients and servers don’t
support export ciphersuites

e But around 3-8% of HTTPS servers did (2015)

 And some modern TLS clients would support
small groups even in non-export ciphersuites

Logjam attack

Client C MitM Server S
cr,|...,DHE,..] L cr, [DHE_EXPORT] |
p sr, DHE ip sr, DHE_EXPORT
_lgg_c_) certg,sign(sks, [cr| sv | psi2 | g | g°])
I ~ il . ga
(ms, k1, ks) = kdf(g?®, cr | sr) b = dlog(g® mod ps12)
(ms, k1, ko) = kdf(g?®, cr | sr)
finished(ms, log) "
lggic L=l authenc(k;,Data/®) "
N finished(ms, logc)
authenc(k,,Data) "
P authenc(ks,Data’)
R L LIl

Figure from Adrian et al. CCS 2015.

|Psec

* |dea also applies to IPsec

* Many more IPsec servers support weak DH
groups

How quickly can you compute discrete
logarithms?
e 92% of vulnerable servers used one of two
standardized 512-bit groups

 With one week of precomputation, can then

compute individual discrete logs in about 1
minute

e Can you extend the technique to 768- or
1024-bit groups?

Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

David AdrianY Karthikeyan Bhargavan* Zakir DurumericY Pierrick Gaudryt Matthew Greens®
J. Alex Halderman? Nadia Heningert* Drew Springall! Emmanuel Thomét Luke Valentat
Benjamin VanderSloot? Eric Wustrow® Santiago Zanella-Béguelin! Paul Zimmermannt

*INRIA Paris-Rocquencourt TINRIA Nancy-Grand Est, CNRS, and Université de Lorraine
I'Microsoft Research ~ *University of Pennsylvania 8 Johns Hopkins ~ YUniversity of Michigan

4.2 Is NSA Breaking 1024-bit DH?

Our calculations suggest that it is plausibly within NSA’s
resources to have performed number field sieve precomputa-
tions for at least a small number of 1024-bit Diffie-Hellman
groups. This would allow them to break any key exchanges
made with those groups in close to real time. If true, this
would answer one of the major cryptographic questions raised
by the Edward Snowden leaks: How is NSA defeating the
encryption for widely used VPN protocols?

Classified documents published by Der Spiegel [46] indi-
cate that NSA is passively decrypting IPsec connections at
significant scale. The documents do not describe the crypt-
analytic techniques used, but they do provide an overview of
the attack system architecture. After reviewing how IPsec
key establishment works, we will use the published informa-

tion to evaluate the hypothesis that the NSA is leveraging weakdh.org
precomputation to calculate discrete logs at scale. :

CA BREACHES

Certificate authority breaches and
errors

DigiNotar in Jul. 2011

— security breach, malicious
certificates for many domains
issued

— went out of business

TURKTRUST in Aug. 2011

— issued intermediate CA with
wildcard signing capabilities

— later used for man-in-the-middle
proxy filtering/scanning

— no evidence for use in attack

— detected only in Jan 2013

Digicert Malaysia in Nov. 2011

— 22 certificates with weak private

keys or missing revocation details
issued

KPN/Getronics in Nov. 2011

— suspended CA business after
detecting infection on its web
server no evidence of certificate
malfeasance

Web browsers trust 650+
certificate authorities which
can issue certificates for any
domain on the Internet

Extended validation

certificates don’t solve the

problem

LESSONS LEARNED

Lessons learned

Be careful of protocol-level side channels
— Bleichenbacher’s attack
— CRIME/BREACH compression

Use standard cryptography correctly
— |Vs for CBC mode

— MAC-then-encode-then-encrypt
vs. encrypt-then-MAC

Be careful of protocol logic
— Renegotiation attack

Sign everything

— Downgrade attacks, Logjam

