
SAC	Summer	School	2016

Implementation	and	analysis	of	
cryptographic	protocols

Part	3:	Attacks
Dr.	Douglas	Stebila

https://www.douglas.stebila.ca/teaching/sac-2016

BLEICHENBACHER’S ATTACK	
ON	RSA	KEY	TRANSPORT

RSA	key	transport

ClientHello -------->
ServerHello

Certificate*
ServerKeyExchange*

CertificateRequest*
<-------- ServerHelloDone

Certificate*
ClientKeyExchange
CertificateVerify*
(derive session keys)
[ChangeCipherSpec]
Finished --------> (derive session keys)

[ChangeCipherSpec]
<-------- Finished

Bi-direction	authenticated	encryption
Optional	compression

HA
N
DS

HA
KE
	P
RO

TO
CO

L
RE

CO
RD

	
LA
YE
R

RSA
public	key

1. Pick	random	binary	string
2. Encrypt	under	server’s	RSA	public	key
3. Send	to	server

Textbook	RSA	public	key	encryption

• Key	Generation:
– Pick	primes	p,	q
– Compute	n	=	pq
– Compute	φ(n)	=	(p-1)(q-1)
– Pick	e	=	3	or	65537	(for	example)
– Compute	d	=	e-1 mod	φ(n)
– Public	key:	(n,	e)
– Private	key:	(n,	d)

Textbook	RSA	public	key	encryption

• Encrypt(m,	pk =	(n,e))
– Represent	m	as	an	integer	between	1	and	n
– Compute	c	=	me mod	n

Malleability

• Textbook	RSA	encryption	is	malleable:
– c2 mod	n	is	the	encryption	of	m2 mod	n

• Encryption	isn’t	supposed	to	provide	integrity,	
but	this	is	still	undesirable.

• One	solution:
– Add	redundancy	or	encoding	that	would	be	hard	
to	maintain	after	malleability

PKCS	#1	v1.5	padding

• PKCS	=	Public	Key	Cryptography	Standards
– Originally	created	by	the	RSA	company

• Let	k	be	the	length	of	n	in	bits

• M	=
where	|padding|	=	k	- |msg|	- 3
and	every	byte	of	padding	is	non-zero

00 02 padding 00 msg

PKCS	#1	v1.5	encryption/decryption

• Encrypt(m,	pk =	(n,e))
– Encode	m	as	M	using	PKCS#1	v1.5	padding
– c	=	Me mod	n

• Decrypt(c,	sk =	(n,d))
– Compute	M	=	cd mod	n
– If	M	is	PKCS-conforming,	parse	and	return	m
– Else	output	error

Bleichenbacher’s attack

• Given	c	and	an	oracle	for	deciding	if	c	is	PKCS-
conforming,	find	m.

1. Compute	c’	=	cse mod	n	for	small	s
2. If	c’	is	PKCS-conforming,	then	first	2	bytes	of	ms

mod	n	are	00	||	02
3. In	other	words,	2B	≤	ms mod	n	<	3B

where	B=28(k-2) mod	n
4. Repeat	with	many	s	to	narrow	down	range	of	m
5. For	1024-bit	N,	about	220 oracle	queries	suffice

PKCS-conformance	oracle	in	SSLv3

Server	processing	of	ClientKeyExchange message	in	
RSA	key	transport:
1. Compute	m	=	cd mod	n
2. If	m	not	PKCS-conforming,	reject
3. Else,	do	additional	cryptographic	operations
– Includes	verifying	a	MAC

4. If	MAC	fails,	reject;	else	accept

A	modified	ciphertext will	be	rejected	either	way,	
but	timing	provides	a	way	of	deciding	whether	it	
was	at	step	2	or	step	4.

Defending	against	
Bleichenbacher’s attack

1. Make	server	processing	constant	time
2. Don’t	support	RSA	key	transport

Make	server	processing	constant	time

1. Generate	random	premaster	secret
2. Receive	ciphertext c
3. Decrypt	using	textbook	RSA	encryption
4. If	PKCS	conforming,	continue	as	normal	using	

plaintext
5. If	not	PKCS	confirming,	continue	use	previously	

generated	random	premaster	secret
6. …
7. If	MAC	fails,	reject;	else	accept.

Defending	against	
Bleichenbacher’s attack

1. Make	server	processing	constant	time
– Hard	to	get	right
– Meyer	et	al.	USENIX	2014:	
• Timing	side	channels	in	OpenSSL,	JSSE,	Cavium;	
• Error	message	side	channel	in	JSSE

2. Don’t	support	RSA	key	transport
– Can	still	have	problems	if	same	key	is	used	with	

older	protocols	that	do	support	RSA	key	
transport
• Jager et	al.	CCS	2015:	QUIC	and	TLS	1.3	exploitable	

with	Bleichenbacher oracle	from	other	protocols

BEAST	ADAPTIVE	CHOSEN	
PLAINTEXT	ATTACK

CBC	Mode

• Recall	CBC	mode	encryption:
– Divide	message	m	into	blocks	m1 |	m2 |	…
– c1 =	Ek(m1 XOR iv)
– cj =	Ek(mj XOR cj-1)

Pre-requisites	for	the	attack

• In	HTTPS,	the	same	TLS	connection	is	used	for	
many	requests
–Main	HTML	page
– Images
– CSS
– …

• In	SSLv3	and	TLSv1.0,	the	IV	is	derived	from	
the	master	secret
– Subsequent	requests	over	the	same	TLS	
connection	use	the	same	IV

Oracle	for	testing	plaintext	block

• Adversary	observes	c1 |	c2 |	…	|	cn
for	unknown	plaintext	m1 |	m2 |	...	|	mn

• Adversary	wants	to	know	if	mj =	m*	
• Adversary	directs	user	to	send	n+1st	plaintext	
block	as	

mn+1 =	cj-1 XOR cn XOR m*
• =>		cn+1 =	Ek(mn+1 XOR cn)

=	Ek(cj-1 XOR cn XOR m*	XOR cn)
=	Ek(cj-1 XOR m*)
=	cj iff				m*	=	mj

Oracle	for	testing	plaintext	block

• Adversary	can	learn	if	mj =	m*	

• If	block	size	is	128	bits,	then	can	test	one	128-
bit	guess	with	each	chosen	plaintext	query

• Rizzo	and	Duong’s	BEAST	attack	makes	this	
feasible

HTTP	requests

• Suppose	the	adversary	can	make	the	victim	
make	an	HTTP	request	to	a	particular	URL,	and	
the	cookie	gets	appended	immediately	after

• GET /↩Cookie: s=1234567890123456

• Corresponds	to	two	16-byte	blocks	of	AES	in	CBC	
mode

16 16

First	block	of	16	bytes:
Entirely	known to	adversary

Second	block	of	16	bytes:
Entirely	unknown to	adversary

HTTP	requests

• Adversary	directs	to	client	to	request	a	
different	URL	that	has	a	different	split	across	
breaks	

• GET /abcdefghijklmno↩Cookie: s=1
234567890123456

16 16

First	block	of	16	bytes:
Entirely	known to	adversary

Second	block	of	16	bytes:
Adversary	knows	all	except	for	one	byte
=>		<256	guesses	required

HTTP	requests

• Adversary	directs	to	client	to	request	a	
different	URL	that	has	a	different	split	across	
breaks	

• GET /abcdefghijklmn↩Cookie: s=12
34567890123456

16 16

First	block	of	16	bytes:
Entirely	known to	adversary

Second	block	of	16	bytes:
Adversary	knows	all	except	for	one	byte
=>		<256	guesses	required

Repeat	until	all	target	bytes	become	known

Defending	against	BEAST	attack

• TLS	v1.1	and	above	use	explicit	IVs,	so	a	new	IV	is	
used	with	each	request

• At	the	time	of	attack	(2011),	TLS	v1.1	adoption	
was	low
– Recommended	solution:	switch	to	RC4
– But	then	RC4	biases	became	problematic

• Countermeasure:	1/n-1	record	splitting
– Send	only	1	byte	(+	padding)	in	first	block
– Then	n-1	bytes	in	next	block
– Has	the	effect	of	randomizing	the	IV	in	a	backward	
compatible	way

CRIME	AND	BREACH	ATTACKS	
ON	COMPRESSION

Symmetric	key	encryption

A	symmetric	key	
encryption	scheme	is	
a	triple	of	
algorithms:
• KeyGen()	–>	k
• Enck(m)	–>	c
• Deck(c)	–>	m

KeyGen and	Enc can	
be	probabilistic

Main	security	goal:
• indistinguishability

Attacker	cannot	tell	apart	
encryptions	of	two	messages	of	
the	same	length:

Enck(m0)	looks	like	Enck(m1)	
when	|m0|=|m1|

Symmetric	key	encryption

I voted for Bush. Enck 8jv0cKErN3aafBc6i

I voted for Gore. Enck WpmuUzU581bgOvMLZ

same length input => same length output

len = 17

len = 17

Compression

A	compression	
scheme	is	a	pair	of	
algorithms:
• Comp(m)	–>	o
• Decomp(o)	–>	m

Comp	may	be	
probabilistic	(but	
usually	isn’t)

Main	security	goal:
• none

Main	functionality	goal:
• |Comp(m)|	<<	|m|	for	
common	distribution	of	m

• Can’t	be	true	for	all	m due	to	
Shannon’s	theorem

Compression

not much
redundancy here! Comp

not much
redundancy here!

more more more
redundancy Comp

3{more }
redundancy

same length input => possibly different length output

len = 25

len = 18

len = 25

len = 25

Compression	then	encryption

not much
redundancy here! Comp

wYvXqQpMESn&
tFKSiYsYLm^8j

more more more
redundancy

lQQeOMh0q
plTmyEinS

len = 25

len = 18

Enck

Comp Enck

same length input => possibly different length output

len = 25

len = 25

A	test

Man. U.
2005-2014
lost lost
WON! WON!
WON! lost
WON! lost
WON! lost

Arsenal
2005-2014
lost lost
lost lost
lost lost
lost lost
lost lost

Comp Enck

Which	ciphertext is	for	which	
message?

D1fAGUR1zqv
lhXdX3c8qd+
BYBwK6dAnoG
GQGCmvFIM9/
s6WJjgr2

yI5pDrFhPk3
15Cmymr6xCb

LTVEAx

One	message	compresses	more

Man. U.
2005-2014
2{lost }
2{WON! }

3{WON! lost }

Arsenal
2005-2014
10{lost }

Deflate	(LZ77)	compression	algorithm

• Replaces	repeated	strings	with	back	references	
(distance,	length)	to	previous	occurrence.

• Important	parameter:	window	size
– How	far	back	does	it	go	to	search	for	occurrences?
– a.k.a.	dictionary	size

You say potato,
I say potahto. Comp

You say potato,
I (-14,8)hto.

Combining	user	secrets	+	adversary	
input

• Suppose	you	have	a	secret	
• and	combine	it	with	adversarial	data
• then	compress	and	encrypt

• Adaptive attacker	can	use	this	to	learn	your	
secret

CRIME	ATTACK	ON	
COMPRESSION	IN	TLS

TLS	record	layer

MAC Pad Encrypt

Compression	in	TLS	record	layer

Compress MAC Pad Encrypt

Transmitting	an	HTTP	request

User
•Requests	
www.facebook.com

Browser	(HTTP)
•Creates	GET	request	
with	saved	cookie

Browser	(TLS)
• Input:	HTTP	message
•Compress
•MAC
•Pad
•Encrypt

Send	over	
Internet

Secret	values	in	HTTP	documents
GET /
Host: www.facebook.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10;
rv:34.0) Gecko/20100101 Firefox/34.0
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*
;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Cookie: datr=DzK9VBnObWDqfL7XLwGSSEsu;
reg_fb_ref=https%3A%2F%2Fwww.facebook.com%2F;
reg_fb_gate=https%3A%2F%2Fwww.facebook.com%2F; dpr=2
Connection: keep-alive
Cache-Control: max-age=0

This secret cookie
identifies my session

to Facebook

The URL can be adversary-supplied data

Attack
Please send a GET request for
https://www.facebook.com/?datr=A

Attack

Ad

Please send a GET request for
https://www.facebook.com/?datr=A

GET /?datr=A
Host: www.facebook.com
Cookie: datr=DzK9VBnObW
DqfL7XLwGSSEsu
...

Attack

Observes compressed
& encrypted request

Ad

Please send a GET request for
https://www.facebook.com/?datr=A

VGytgpDn/1Ym5oCdB3Vh2
D5EmdjLRdkx7tEvKG43WJ
yD++cx8CJlBbetQejiXLX
+oQO9bnUMYQwtglOSf9bf
oyWJkYxHsKfqYNqWAfCIg
8U5BK92Ayvk858MJOnTuK

len = 204

Attack

Ad

Please send a GET request for
https://www.facebook.com/?datr=B

GET /?datr=B
Host: www.facebook.com
Cookie: datr=DzK9VBnObW
DqfL7XLwGSSEsu
...

Attack

Observes compressed
& encrypted request

Ad

Please send a GET request for
https://www.facebook.com/?datr=B

UQ5ItQ1Y4BVCy37Fhu5K4
hyre7l5P4pWwAYfvnzg9m
R5Qq250PF1yQpf83AFJ34
QS+9BPjUnBzVGENe15r29
rY9tRfIFAdE8ecEmVTFtl
zHy+8EIwxDK67rxM29clJ

len = 204

Attack

Observes compressed
& encrypted request

Ad

Please send a GET request for
https://www.facebook.com/?datr=C

Wdb42n0LeQbVweAoiCZxE
j9O0U+qaGPPbe9Sebz2Dx
GhYWj9U4X0cKYyBpTSpB4
4dOqd4DpCscHEsBdg0p6q
DXiSBJ+MLOKbpRvAAmPhy
9Sn9VPnsHgKyB4I1lgCKA

len = 204

Attack

Observes compressed
& encrypted request

Ad

Please send a GET request for
https://www.facebook.com/?datr=D

O8Gb8JwSuoNrcQ7190KSs
nM7n22lOtByzmvv555ZP+
+4lNW2wIuRrTF6KlKdjOB
425VVDUbKKdHNF9YaaxTy
lVWBVo1ApZ4PTSnB1J0pt
jAsecGXjRXOXTwye

len = 199

Attack

Ad

Please send a GET request for
https://www.facebook.com/?datr=D

GET /?datr=D
Host: www.facebook.com
Cookie: datr=DzK9VBnObW
DqfL7XLwGSSEsu
...

Repeated text => compression

Attack

Observes compressed
& encrypted request

Ad

Please send a GET request for
https://www.facebook.com/?datr=Da

Ok3MV18blnYFIjz2tcucQ
x2mJ8MLULVqMSYO9Lo1r0
wxwjEG8pLwaPaVtrnf46l
ypdqbYQ22oJw63ixkS1HR
QVfz8UKs9tOhPvTAwUiwS
yukxrKq9x9I+3fO8lv8aU

len = 205

CRIME	attack	on	TLS
“Compression	Ratio	Info-leak	Made	

Easy”
• Rizzo	and	Duong	

[ekoparty 2012]

• Victim	visits	adversary-
controlled	page

• Adversarial	Javascript causes	
browser	to	make	many	
requests

• Figure	out	1st letter	of	cookie
• Figure	out	2nd letter	of	cookie
• Figure	out	3rd letter	of	cookie
• …

A	few	tricky	bits	to	make	it	work	
in	TLS:
• TLS	splits	plaintext	into	16K	

records	then	compresses	and	
encrypts	each	record	
separately

• Need	to	ensure	that	you	can	
observe	length	differences	
based	on	compression

• But	it	can	be	made	to	work!

CRIME	wasn’t	new

• Kelsey	[FSE	2002]	theorized	length-based	
attacks	on	compression-encryption	with	
adversary-chosen	prefix.

Impact	of	CRIME	attack

August 3, 2016 • https://www.trustworthyinternet.org/ssl-pulse/

But…

• Compression	is	present	
elsewhere	on	the	
Internet.

• HTTP	allows	gzip
compression	of	the	
body

BREACH	ATTACK	ON	
COMPRESSION	IN	HTTP

BREACH	attack

• Attack	against	HTTP	
compression	
hypothesized	in	
CRIME	presentation

“Browser	Reconnaissance	
and	Exfiltration	via	Adaptive	
Compression	of	Hypertext”
• attack	demonstrated	
against	secrets	in	HTML

• Gluck,	Harris,	Prado	[Black	
Hat	2013]

Cross-site	request	forgery
Please send a GET request for
https://www.bank.com/transfer
?to=Eve&amount=1000000

GET /transfer?to=Eve
&amount=1000000
Host: www.bank.com
Cookie: account=Alice
...

$

Anti-CSRF	tokens

Protection	strategy:	server	
hides	a	random	token	in	
each	HTML	form	it	creates	
and	will	only	execute	
action	if	received	
response	contains	that	
token.

<form
action="/money_transfer"
method="post">
<input type="hidden"
name="csrftoken"

value="OWT4NmQlODE4ODRjN2Q1
NTlhMmZlYWE...">
...
</form>

BREACH	Attack

Works	against	websites	
that	echo	user	input	in	the	
same	page	as	a	valuable	
secret	(e.g.,	anti-CSRF	
token).
• combining	user	secrets	
+	adversary	input	then	
compressing

<p>Welcome,
<?=$_GET['username']?>.</p>
<form
action="/money_transfer"
method="post">
<input type="hidden"
name="csrftoken"

value="OWT4NmQlODE4ODRjN2Q1
NTlhMmZlYWE...">
...
</form>

Recommendations	from	BREACH	
attack

1. Disabling	HTTP	compression
2. Separating	secrets	from	user	input
3. Randomizing	secrets	per	request
4. Masking	secrets	(effectively	randomizing	by	

XORing with	a	random	nonce)
5. Length	hiding	(by	adding	a	random	number	of	

bytes	to	the	responses)
6. Rate-limiting	the	requests

Impact	of	BREACH	attack

“Enable and test gzip compression
support on your web server.”

Compression	in	network	protocols

HTTP/1.1

•supports
compression

•BREACH attack
•still widely used

SPDY

•supports
compression

•CRIME/BREACH
work against early
versions

HTTP/2

•separate
compression of
every headers

•uses special
algorithm HPACK
for header
compression

Others

•SSH
•PPTP
•OpenVPN
•XMPP
•IMAP
•SMTP

CRIME	and	BREACH	
Attacks

Observes compressed
& encrypted request

Ad

Please send a GET request for
https://www.facebook.com/?datr=A

VGytgpDn/1Ym5oCdB3Vh2
D5EmdjLRdkx7tEvKG43WJ
yD++cx8CJlBbetQejiXLX
+oQO9bnUMYQwtglOSf9bf
oyWJkYxHsKfqYNqWAfCIg
8U5BK92Ayvk858MJOnTuK

len = 204

Requires	attacker	to	be
on	the	network	path

The	HEIST	attack

• “HTTP	Encrypted	Information	can	be	Stolen	
through	TCP	windows”

• Just	published	at	BlackHat 2016	last	week

• https://www.blackhat.com/docs/us-
16/materials/us-16-VanGoethem-HEIST-HTTP-
Encrypted-Information-Can-Be-Stolen-
Through-TCP-Windows-wp.pdf

HEIST	attack

Ad

Please send a GET request for
https://www.facebook.com/?datr=A

Tell	me	when	you	are	done	
loading	the	request
(Javascript Resource	Timing	API)

Time

Doesn’t	require	attacker
to	be	on	the	network	path

CROSS-CIPHERSUITE ATTACK

From	an	application	
perspective,	TLS	provides:
– negotiation	of	
parameters

– entity	authentication
– key	exchange
– confidentiality	and	
integrity	of	messages

Security	goals	of	TLS

neg
auth
kex
conf
int

otiation

entication

key	exchange

identiality

egrity

How	we’d	like	to	analyze	ciphersuites

(neg)
auth1
(kex1)
conf1
int1

ciphersuite 1

(neg)
auth2
(kex2)
conf2
int2

ciphersuite 2

(neg)
auth3
(kex3)
conf3
int3

ciphersuite 3

The	reality	of	multi-ciphersuite usage

(neg)
auth1
(kex1)
conf1
int1

ciphersuite 1

(neg)
auth1
(kex1)
conf1
int2

ciphersuite 2

(neg)
auth1
(kex2)
conf2
int1

ciphersuite 3

In	practice,	TLS	servers	use	the	
same	long-term	key	for	all	

ciphersuites

Is	this	secure?

Even	if	a	ciphersuite is	secure	on	its	own,	it	may	
not	be	secure	if	the	long-term	key	is	shared	
between	two	ciphersuites.

Long-term	key	reuse	across	
ciphersuites

struct {

select (KeyExchangeAlgorithm):

case dhe_dss:

case dhe_rsa:

ServerDHParams params;

digitally-signed struct {

opaque client_random[32];

opaque server_random[32];

ServerDHParams params;

} signed_params;

case ec_diffie_hellman:

ServerECDHParams params;

digitally-signed struct {

opaque client_random[32];

opaque server_random[32];

ServerECDHParams params;

} signed_params;

} ServerKeyExchange

struct {

opaque dh_p<1..2^16-1>;

opaque dh_g<1..2^16-1>;

opaque dh_Ys<1..2^16-1>;

} ServerDHParams;

struct {

ECCurveType curve_type = explicit_prime(1);

opaque prime_p <1..2^8-1>;

ECCurve curve;

ECPoint base;

opaque order <1..2^8-1>;

opaque cofactor <1..2^8-1>;

opaque point <1..2^8-1>;

} ServerECDHParams;

Figure 5: Data structures for signed-Di�e–Hellman ciphersuites in TLS

8.1 Attack of Mavrogiannopoulos et al.

In TLS signed-Di�e–Hellman ciphersuites (both finite field and elliptic curve), the ServerKeyExchange
message [16, §7.4.3] contains a data structure with the Di�e–Hellman parameters and server’s
ephemeral public key, as well as the server’s signature on these values. The signature is meant
to provide server-to-client authentication. Figure 5 shows the ServerKeyExchange message and
sub-structures for finite field and elliptic curve signed-Di�e–Hellman ciphersuites. Putting aside
the finite-field versus ephemeral Di�e–Hellman case, some multi-ciphersuite use of TLS is likely
to be secure, for example signed finite-field Di�e–Hellman with di↵erent hash algorithms or bulk
ciphers. Bhargavan et al. [9] investigate the multi-ciphersuite security of the TLS handshake,
and show that certain combinations of signature schemes, hashes, PRFs, and key establishment
can be proven to be a secure AKE protocol even with key re-use. In the rest of this section,
we examine solely the case of finite-field versus elliptic curve Di�e–Hellman to illustrate the
cross-protocol attack in our model and framework.

In the ServerKeyExchange data structure on the left of Figure 5, for both (finite field) DH
and ECDH the digitally-signedstruct signed params is the signature over the client and
server random values and the Di�e–Hellman parameters structure. However, the inputs to the
signature do not contain an indicator distinguishing ServerDHParams or ServerECDHParams:
the fields from the relevant sub-structure are simply concatenated without a prefix. Since the
signature itself does not explicitly indicate whether the thing that is signed is a ServerDHParams

or a ServerECDHParams structure, we are at risk of a cross-ciphersuite attack.
Mavrogiannopoulos et al. show that there is enough flexibility in the ServerECDHParams

struct to construct something that is valid in both finite field and elliptic curve settings. The
ServerECDHParams struct actually supports several di↵erent curve type values: explicit prime,
explicit char2, and named curve. The attack works by using an explicit prime curve (which
is why we only show the explicit prime fields in Figure 5).6 In particular, if the explicit
curve is actually the secp384r1 standardized curve and the server’s ephemeral private key
is selected randomly, then the ServerECDHParams data structure will also be a well-formed
ServerDHParams structure for a group of around 2048 bits with probability around 2�27.6.
Moreover, the resulting finite field DH group will be smooth with reasonable probability, allowing
the attacker to compute the ephemeral private key, for a total attack success probability of
around 2�40.

The recommended fix by Mavrogiannopoulos et al. is to explicitly include the name of the
peer, the handshake transcript, and the chosen key exchange algorithm in the digitally-signed

6Most popular implementations of elliptic curve cryptography in TLS only implement the named curve type,
but the standard does allow explicit curves.

25

Cross-ciphersuite attack
Mavrogiannopoulos et	al.	CCS	2012[MVVP12]	

(built	on	observation	of	Wagner	&	Schneier 1996)

1.	No	"type"	information.
2.	Some	valid	ServerECDHParams binary	

strings	are	also	valid	WEAK
ServerDHParams binary	strings.

=>	TLS	not	secure	with	long-term	key	reuse.

=>	Security	of	a	ciphersuite in	isolation	does	not	
imply	security	with	long-term	key	reuse.

[MVVP12]	Cross-ciphersuite attack
(built	on	observation	of	Wagner	&	Schneier 1996)

RENEGOTIATION	ATTACK

Renegotiation	allows	parties	in	an	established	TLS	channel	to	
create	a	new	TLS	channel	that	continues	from	the	existing	
one.

Once	you’ve	established	a	TLS	channel,	why	would	you	ever	
want	to	renegotiate	it?
– Change	cryptographic	parameters
– Change	authentication	credentials
– Identity	hiding	for	client

• second	handshake	messages	sent	encrypted	under	first	record	layer
– Refresh	encryption	keys

• more	forward	secrecy
• record	layer	has	maximum	number	of	encryptions	per	session	key

Why	renegotiate?

Renegotiation	in	TLS
(pre-November	2009)

Client Server
(TLS)TLS	handshake0

TLS	recordlayer0

I’d	like	to	
renegotiate

TLS	handshake1

m0

TLS	recordlayer1

m1

Messages	for	renegotiated	
handshake	are	like	those	in	
original	handshake,	just	sent	

in	existing	record	layer

TLS	Renegotiation	“Attack”
Ray	&	Dispensa,	November	2009

Client Server
(TLS)

TLS	handshakeEB

TLS	recordlayerEB

mE

TLS	recordlayerAB

mA

Eve
TLS	handshakeAB

mE‖mA

Application	
receives	

concatenation	
of	record	layers

Server
(application)

mE

mA

Not	an	attack	on	
TLS,	but	on	how	
applications	
misuse TLS

• Attacker	sends
– mE =	“GET	/orderPizza?deliverTo=123-Fake-St↩

X-Ignore-This:	”

• Client	sends
– mA =	“GET	/orderPizza?deliverTo=456-Real-St↩

Cookie:	Account=1A2B”

• Server’s	web	server	receives
– mE‖mA =	“GET	/orderPizza?deliverTo=123-Fake-St↩

X-Ignore-This:	GET	/orderPizza?deliverTo=456-Real-St↩
Cookie:	Account=1A2B”

Example:	HTTP	Injection

X-Ignore-This:	is	an	invalid	header,	so	the	rest	of	that	line	gets	ignored.

The	server’s	GET	request	is	processed	with	the	cookie	supplied	by	the	client.

Q:	What	property	should	a	secure	renegotiable	
protocol	have?

A:	Whenever	two	parties	successfully	renegotiate,	
they	are	assured	they	have	the	exact	same	view	of	
everything	that	happened	previously.
• Every	time	we	accept,	we	have	a	matching	
conversation	of	previous	handshakes	and	record	
layers.

Renegotiation	security

Two	related	countermeasures	standardized	by	IETF	
in	RFC	5746:
1. Signalling Ciphersuite Value
2. Renegotiation	Indication	Extension

Basic	idea:	include	fingerprint	of	previous	
handshake	when	renegotiating.
• Note:	This	is	a	"white-box"	modification	of	TLS.

TLS	Renegotiation	Countermeasures

SCSV/RIE	fairly	quickly	and	
widely	adopted.

Currently	96%	
deployment
(SSL	Pulse,	August	3,	2016)

TLS	Renegotiation	Countermeasures

LOGJAM	ATTACK

Export	ciphersuites

• Early	versions	of	SSL	and	TLS	included	export
ciphersuites,	which	included	weak	(512-bit)	
RSA	and	Diffie-Hellman

• Recall:	TLS	ephemeral	DH	is	signed	Diffie-
Hellman
– But	signature	only	on	a	subset	of	the	request	
(nonces +	server	public	key)

– Transcript	authentication	comes	from	a	MAC	
under	the	master	secret	derived	from	the	DH	
shared	secret

Logjam	attack	idea
1. MITM	modifies	client	request	to	server	to	

request	export	signed-DH	ciphersuite
– If	adversary	just	relays	this	back,	the	client	won’t	

accept,	because	the	transcripts	won’t	match	and	the	
MAC	will	fail

2. MITM	receives	2048-bit	RSA	signature	on	512-
bit	finite	field	DH	key

3. MITM	computes	discrete	log	on	512-bit	public	
key

4. MITM	computes	DH	shared	secret
5. MITM	computes	MAC	on	transcript	the	client	

expects
6. MITM	completes	handshake	with	client

Export	ciphersuites

• Most	modern	TLS	clients	and	servers	don’t	
support	export	ciphersuites

• But	around	3-8%	of	HTTPS	servers	did	(2015)
• And	some	modern	TLS	clients	would	support	
small	groups	even	in	non-export	ciphersuites

Logjam	attack

Figure	from	Adrian	et	al.	CCS	2015.

IPsec

• Idea	also	applies	to	IPsec
• Many	more	IPsec	servers	support	weak	DH	
groups

How	quickly	can	you	compute	discrete	
logarithms?

• 92%	of	vulnerable	servers	used	one	of	two	
standardized	512-bit	groups

• With	one	week	of	precomputation,	can	then	
compute	individual	discrete	logs	in	about	1	
minute

• Can	you	extend	the	technique	to	768- or	
1024-bit	groups?

weakdh.org

CA	BREACHES

Certificate	authority	breaches	and	
errors

• DigiNotar in	Jul.	2011
– security	breach,	malicious	

certificates	for	many	domains	
issued	

– went	out	of	business
• TURKTRUST in	Aug.	2011

– issued	intermediate	CA	with	
wildcard	signing	capabilities	

– later	used	for	man-in-the-middle	
proxy	filtering/scanning

– no	evidence	for	use	in	attack
– detected	only	in	Jan	2013	

• Digicert Malaysia in	Nov.	2011
– 22	certificates	with	weak	private	

keys	or	missing	revocation	details	
issued	

• KPN/Getronics in	Nov.	2011	
– suspended	CA	business	after	

detecting	infection	on	its	web	
server	no	evidence	of	certificate	
malfeasance	

• Web	browsers	trust	650+	
certificate	authorities	which	
can	issue	certificates	for	any
domain	on	the	Internet

• Extended	validation	
certificates don’t	solve	the	
problem

LESSONS	LEARNED

Lessons	learned

• Be	careful	of	protocol-level	side	channels
– Bleichenbacher’s attack
– CRIME/BREACH	compression

• Use	standard	cryptography	correctly
– IVs	for	CBC	mode
– MAC-then-encode-then-encrypt
vs.	encrypt-then-MAC

• Be	careful	of	protocol	logic
– Renegotiation	attack

• Sign	everything
– Downgrade	attacks,	Logjam

